DataFrame基于列存储的分布式数据集合。 理论上等同于关系型数据库的一个table,或者R/Python中的一个数据框架, but with richer optimizations under the hood。 DataFrames 可以从多个数据源组中构建生成, 包括结构化数据文件,hive表,外部数据库以及已经存在的RDD。
spark SQL提供的scala接口支持自动的将包含case class的RDD转为DataFrame。 case class定义了table的schema, case class的变量名被读取出来通过反射变为列明。 case classes可嵌套,或者包含复杂的数据类型,如Sequences或者Array。 RDD可以转为DataFrame,并注册成table。
These options must all be specified if any of them is specified. They describe how to partition the table when reading in parallel from multiple workers. partitionColumn must be a numeric column from the table in question. Notice that lowerBound and upperBound are just used to decide the partition stride, not for filtering the rows in table. So all rows in the table will be partitioned and returned.
val sc: SparkContext // An existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val df = sqlContext.read.json("examples/src/main/resources/people.json")
// Displays the content of the DataFrame to stdout
df.show()
val sc: SparkContext // An existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
// Create the DataFrame
val df = sqlContext.read.json("examples/src/main/resources/people.json")
// Show the content of the DataFrame
df.show()
// age name
// null Michael
// 30 Andy
// 19 Justin
// Print the schema in a tree format
df.printSchema()
// root
// |-- age: long (nullable = true)
// |-- name: string (nullable = true)
// Select only the "name" column
df.select("name").show()
// name
// Michael
// Andy
// Justin
// Select everybody, but increment the age by 1
df.select(df("name"), df("age") + 1).show()
// name (age + 1)
// Michael null
// Andy 31
// Justin 20
// Select people older than 21
df.filter(df("age") > 21).show()
// age name
// 30 Andy
// Count people by age
df.groupBy("age").count().show()
// age count
// null 1
// 19 1
// 30 1
val sqlContext = ... // An existing SQLContext
val df = sqlContext.sql("SELECT * FROM table")
// Encoders for most common types are automatically provided by importing sqlContext.implicits._
val ds = Seq(1, 2, 3).toDS()
ds.map(_ + 1).collect() // Returns: Array(2, 3, 4)
// Encoders are also created for case classes.
case class Person(name: String, age: Long)
val ds = Seq(Person("Andy", 32)).toDS()
// DataFrames can be converted to a Dataset by providing a class. Mapping will be done by name.
val path = "examples/src/main/resources/people.json"
val people = sqlContext.read.json(path).as[Person]
// sc is an existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._
// Define the schema using a case class.
// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
// you can use custom classes that implement the Product interface.
case class Person(name: String, age: Int)
// Create an RDD of Person objects and register it as a table.
val people = sc.textFile("examples/src/main/resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()
people.registerTempTable("people")
// SQL statements can be run by using the sql methods provided by sqlContext.
val teenagers = sqlContext.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")
// The results of SQL queries are DataFrames and support all the normal RDD operations.
// The columns of a row in the result can be accessed by field index:
teenagers.map(t => "Name: " + t(0)).collect().foreach(println)
// or by field name:
teenagers.map(t => "Name: " + t.getAs[String]("name")).collect().foreach(println)
// row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
teenagers.map(_.getValuesMap[Any](List("name", "age"))).collect().foreach(println)
// Map("name" -> "Justin", "age" -> 19)
// sc is an existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
// Create an RDD
val people = sc.textFile("examples/src/main/resources/people.txt")
// The schema is encoded in a string
val schemaString = "name age"
// Import Row.
import org.apache.spark.sql.Row;
// Import Spark SQL data types
import org.apache.spark.sql.types.{StructType,StructField,StringType};
// Generate the schema based on the string of schema
val schema =
StructType(
schemaString.split(" ").map(fieldName => StructField(fieldName, StringType, true)))
// Convert records of the RDD (people) to Rows.
val rowRDD = people.map(_.split(",")).map(p => Row(p(0), p(1).trim))
// Apply the schema to the RDD.
val peopleDataFrame = sqlContext.createDataFrame(rowRDD, schema)
// Register the DataFrames as a table.
peopleDataFrame.registerTempTable("people")
// SQL statements can be run by using the sql methods provided by sqlContext.
val results = sqlContext.sql("SELECT name FROM people")
// The results of SQL queries are DataFrames and support all the normal RDD operations.
// The columns of a row in the result can be accessed by field index or by field name.
results.map(t => "Name: " + t(0)).collect().foreach(println)
val df = sqlContext.read.load("examples/src/main/resources/users.parquet")
df.select("name", "favorite_color").write.save("namesAndFavColors.parquet")
val df = sqlContext.read.format("json").load("examples/src/main/resources/people.json")
df.select("name", "age").write.format("parquet").save("namesAndAges.parquet")
val df = sqlContext.sql("SELECT * FROM parquet.`examples/src/main/resources/users.parquet`")
import sqlContext.implicits._
val people: RDD[Person] = ... // An RDD of case class objects, from the previous example.
// The RDD is implicitly converted to a DataFrame by implicits, allowing it to be stored using Parquet.
people.write.parquet("people.parquet")
// Read in the parquet file created above. Parquet files are self-describing so the schema is preserved.
// The result of loading a Parquet file is also a DataFrame.
val parquetFile = sqlContext.read.parquet("people.parquet")
//Parquet files can also be registered as tables and then used in SQL statements.
parquetFile.registerTempTable("parquetFile")
val teenagers = sqlContext.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19")
teenagers.map(t => "Name: " + t(0)).collect().foreach(println)
// sqlContext from the previous example is used in this example.
// This is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._
// Create a simple DataFrame, stored into a partition directory
val df1 = sc.makeRDD(1 to 5).map(i => (i, i * 2)).toDF("single", "double")
df1.write.parquet("data/test_table/key=1")
// Create another DataFrame in a new partition directory,
// adding a new column and dropping an existing column
val df2 = sc.makeRDD(6 to 10).map(i => (i, i * 3)).toDF("single", "triple")
df2.write.parquet("data/test_table/key=2")
// Read the partitioned table
val df3 = sqlContext.read.option("mergeSchema", "true").parquet("data/test_table")
df3.printSchema()
// The final schema consists of all 3 columns in the Parquet files together
// with the partitioning column appeared in the partition directory paths.
// root
// |-- single: int (nullable = true)
// |-- double: int (nullable = true)
// |-- triple: int (nullable = true)
// |-- key : int (nullable = true)
sqlContext.refreshTable("my_table")
// sc is an existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
// A JSON dataset is pointed to by path.
// The path can be either a single text file or a directory storing text files.
val path = "examples/src/main/resources/people.json"
val people = sqlContext.read.json(path)
// The inferred schema can be visualized using the printSchema() method.
people.printSchema()
// root
// |-- age: integer (nullable = true)
// |-- name: string (nullable = true)
// Register this DataFrame as a table.
people.registerTempTable("people")
// SQL statements can be run by using the sql methods provided by sqlContext.
val teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19")
// Alternatively, a DataFrame can be created for a JSON dataset represented by
// an RDD[String] storing one JSON object per string.
val anotherPeopleRDD = sc.parallelize(
"""{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil)
val anotherPeople = sqlContext.read.json(anotherPeopleRDD)
// sc is an existing SparkContext.
val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc)
sqlContext.sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)")
sqlContext.sql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src")
// Queries are expressed in HiveQL
sqlContext.sql("FROM src SELECT key, value").collect().foreach(println)